LinearRegression
Package
weka.classifiers.functions
Synopsis
Class for using linear regression for prediction. Uses the Akaike criterion for model selection, and is able to deal with weighted instances.
Options
The table below describes the options available for LinearRegression.
Option |
Description |
---|---|
attributeSelectionMethod |
Set the method used to select attributes for use in the linear regression. Available methods are: no attribute selection, attribute selection using M5's method (step through the attributes removing the one with the smallest standardised coefficient until no improvement is observed in the estimate of the error given by the Akaike information criterion), and a greedy selection using the Akaike information metric. |
debug |
Outputs debug information to the console. |
eliminateColinearAttributes |
Eliminate colinear attributes. |
ridge |
The value of the Ridge parameter. |
Capabilities
The table below describes the capabilites of LinearRegression.
Capability |
Supported |
---|---|
Class |
Missing class values, Numeric class, Date class |
Attributes |
Numeric attributes, Nominal attributes, Binary attributes, Date attributes, Missing values, Empty nominal attributes, Unary attributes |
Min # of instances |
1 |