LibSVM

Package

weka.classifiers.functions

Synopsis

A wrapper class for the libsvm tools (the libsvm classes, typically the jar file, need to be in the classpath to use this classifier).
LibSVM runs faster than SMO since it uses LibSVM to build the SVM classifier.
LibSVM allows users to experiment with One-class SVM, Regressing SVM, and nu-SVM supported by LibSVM tool. LibSVM reports many useful statistics about LibSVM classifier (e.g., confusion matrix,precision, recall, ROC score, etc.).

Yasser EL-Manzalawy (2005). WLSVM. URL http://www.cs.iastate.edu/~yasser/wlsvm/.

Chih-Chung Chang, Chih-Jen Lin (2001). LIBSVM - A Library for Support Vector Machines. URL http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Available in Weka 3.6.x - 3.7.1. Available via the package management system for Weka >= 3.7.2 (LibSVM).

Options

The table below describes the options available for LibSVM.

Option

Description

SVMType

The type of SVM to use.

cacheSize

The cache size in MB.

coef0

The coefficient to use.

cost

The cost parameter C for C-SVC, epsilon-SVR and nu-SVR.

debug

If set to true, classifier may output additional info to the console.

degree

The degree of the kernel.

eps

The tolerance of the termination criterion.

gamma

The gamma to use, if 0 then 1/max_index is used.

kernelType

The type of kernel to use

loss

The epsilon for the loss function in epsilon-SVR.

normalize

Whether to normalize the data.

nu

The value of nu for nu-SVC, one-class SVM and nu-SVR.

probabilityEstimates

Whether to generate probability estimates instead of -1/+1 for classification problems.

shrinking

Whether to use the shrinking heuristic.

weights

The weights to use for the classes, if empty 1 is used by default.

Capabilities

The table below describes the capabilites of LibSVM.

Capability

Supported

Class

Nominal class, Missing class values, Binary class

Attributes

Empty nominal attributes, Numeric attributes, Unary attributes, Binary attributes, Date attributes, Nominal attributes

Min # of instances

1