MIEMDD

Package

weka.classifiers.mi

Synopsis

EMDD model builds heavily upon Dietterich's Diverse Density (DD) algorithm.
It is a general framework for MI learning of converting the MI problem to a single-instance setting using EM. In this implementation, we use most-likely cause DD model and only use 3 random selected postive bags as initial starting points of EM.

For more information see:

Qi Zhang, Sally A. Goldman: EM-DD: An Improved Multiple-Instance Learning Technique. In: Advances in Neural Information Processing Systems 14, 1073-108, 2001.

Options

The table below describes the options available for MIEMDD.

Option

Description

debug

If set to true, classifier may output additional info to the console.

filterType

The filter type for transforming the training data.

seed

The random number seed to be used.

Capabilities

The table below describes the capabilites of MIEMDD.

Capability

Supported

Class

Binary class, Missing class values

Attributes

Missing values, Nominal attributes, Binary attributes, Relational attributes, Unary attributes, Empty nominal attributes

Other

Only multi-Instance data

Min # of instances

1