MIDD

Package

weka.classifiers.mi

Synopsis

Re-implement the Diverse Density algorithm, changes the testing procedure.

Oded Maron (1998). Learning from ambiguity.

O. Maron, T. Lozano-Perez (1998). A Framework for Multiple Instance Learning. Neural Information Processing Systems. 10.

Options

The table below describes the options available for MIDD.

Option

Description

debug

If set to true, classifier may output additional info to the console.

filterType

The filter type for transforming the training data.

Capabilities

The table below describes the capabilites of MIDD.

Capability

Supported

Class

Missing class values, Binary class

Attributes

Unary attributes, Relational attributes, Empty nominal attributes, Nominal attributes, Binary attributes, Missing values

Other

Only multi-Instance data

Min # of instances

1