CVParameterSelection

Package

weka.classifiers.meta

Synopsis

Class for performing parameter selection by cross-validation for any classifier.

For more information, see:

R. Kohavi (1995). Wrappers for Performance Enhancement and Oblivious Decision Graphs. Department of Computer Science, Stanford University.

Options

The table below describes the options available for CVParameterSelection.

Option

Description

CVParameters

Sets the scheme parameters which are to be set by cross-validation.
The format for each string should be:
param_char lower_bound upper_bound number_of_steps
eg to search a parameter -P from 1 to 10 by increments of 1:
"P 1 10 11"

classifier

The base classifier to be used.

debug

If set to true, classifier may output additional info to the console.

numFolds

Get the number of folds used for cross-validation.

seed

The random number seed to be used.

Capabilities

The table below describes the capabilites of CVParameterSelection.

Capability

Supported

Class

Date class, Numeric class, Nominal class, Binary class, Missing class values

Attributes

Unary attributes, Date attributes, Missing values, Binary attributes, Relational attributes, Empty nominal attributes, String attributes, Nominal attributes, Numeric attributes

Min # of instances

10