MIBoost

Package

weka.classifiers.mi

Synopsis

MI AdaBoost method, considers the geometric mean of posterior of instances inside a bag (arithmatic mean of log-posterior) and the expectation for a bag is taken inside the loss function.

For more information about Adaboost, see:

Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.

Options

The table below describes the options available for MIBoost.

Option

Description

classifier

The base classifier to be used.

debug

If set to true, classifier may output additional info to the console.

discretizeBin

The number of bins in discretization.

maxIterations

The maximum number of boost iterations.

Capabilities

The table below describes the capabilites of MIBoost.

Capability

Supported

Class

Binary class, Missing class values

Attributes

String attributes, Date attributes, Nominal attributes, Empty nominal attributes, Binary attributes, Missing values, Numeric attributes, Unary attributes, Relational attributes

Other

Only multi-Instance data

Min # of instances

0