AdaBoostM1

Package

weka.classifiers.meta

Synopsis

Class for boosting a nominal class classifier using the Adaboost M1 method. Only nominal class problems can be tackled. Often dramatically improves performance, but sometimes overfits.

For more information, see

Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.

Options

The table below describes the options available for AdaBoostM1.

Option

Description

classifier

The base classifier to be used.

debug

If set to true, classifier may output additional info to the console.

numIterations

The number of iterations to be performed.

seed

The random number seed to be used.

useResampling

Whether resampling is used instead of reweighting.

weightThreshold

Weight threshold for weight pruning.

Capabilities

The table below describes the capabilites of AdaBoostM1.

Capability

Supported

Class

Binary class, Nominal class, Missing class values

Attributes

Date attributes, Numeric attributes, Binary attributes, Nominal attributes, Unary attributes, Missing values, Empty nominal attributes

Min # of instances

1