FarthestFirst

Package

weka.clusterers

Synopsis

Cluster data using the FarthestFirst algorithm.

For more information see:

Hochbaum, Shmoys (1985). A best possible heuristic for the k-center problem. Mathematics of Operations Research. 10(2):180-184.

Sanjoy Dasgupta: Performance Guarantees for Hierarchical Clustering. In: 15th Annual Conference on Computational Learning Theory, 351-363, 2002.

Notes:

  • works as a fast simple approximate clusterer
  • modelled after SimpleKMeans, might be a useful initializer for it

Options

The table below describes the options available for FarthestFirst.

Option

Description

numClusters

set number of clusters

seed

The random number seed to be used.

Capabilities

The table below describes the capabilites of FarthestFirst.

Capability

Supported

Class

No class

Attributes

Missing values, Date attributes, Unary attributes, Empty nominal attributes, Binary attributes, Nominal attributes, Numeric attributes

Min # of instances

1