BayesianLogisticRegression
Package
weka.classifiers.bayes
Synopsis
Implements Bayesian Logistic Regression for both Gaussian and Laplace Priors.
For more information, see
Alexander Genkin, David D. Lewis, David Madigan (2004). Large-scale bayesian logistic regression for text categorization. URL http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf.
Available in Weka 3.6.x - 3.7.1. Available via the package management system for Weka >= 3.7.2 (bayesianLogisticRegression).
Options
The table below describes the options available for BayesianLogisticRegression.
Option |
Description |
---|---|
debug |
Turns on debugging mode. |
hyperparameterRange |
Hyperparameter value range. In case of CV-based Hyperparameters, you can specify the range in two ways: |
hyperparameterSelection |
Select the type of Hyperparameter to be used. |
hyperparameterValue |
Specific hyperparameter value. Used when the hyperparameter selection method is set to specific value |
maxIterations |
The maximum number of iterations to perform. |
normalizeData |
Normalize the data. |
numFolds |
The number of folds to use for CV-based hyperparameter selection. |
priorClass |
The type of prior to be used. |
threshold |
Set the threshold for classifiction. The logistic function doesn't return a class label but an estimate of p(y=+1|B, x(i)). These estimates need to be converted to binary class label predictions. values above the threshold are assigned class +1. |
tolerance |
This value decides the stopping criterion. |
Capabilities
The table below describes the capabilites of BayesianLogisticRegression.
Capability |
Supported |
---|---|
Class |
Binary class |
Attributes |
Empty nominal attributes, Unary attributes, Numeric attributes, Binary attributes |
Min # of instances |
0 |