BayesianLogisticRegression

Package

weka.classifiers.bayes

Synopsis

Implements Bayesian Logistic Regression for both Gaussian and Laplace Priors.

For more information, see

Alexander Genkin, David D. Lewis, David Madigan (2004). Large-scale bayesian logistic regression for text categorization. URL http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf.

Available in Weka 3.6.x - 3.7.1. Available via the package management system for Weka >= 3.7.2 (bayesianLogisticRegression).

Options

The table below describes the options available for BayesianLogisticRegression.

Option

Description

debug

Turns on debugging mode.

hyperparameterRange

Hyperparameter value range. In case of CV-based Hyperparameters, you can specify the range in two ways:
Comma-Separated: L: 3,5,6 (This will be a list of possible values.)
Range: R:0.01-316,3.16 (This will take values from 0.01-316 (inclusive) in multiplications of 3.16

hyperparameterSelection

Select the type of Hyperparameter to be used.

hyperparameterValue

Specific hyperparameter value. Used when the hyperparameter selection method is set to specific value

maxIterations

The maximum number of iterations to perform.

normalizeData

Normalize the data.

numFolds

The number of folds to use for CV-based hyperparameter selection.

priorClass

The type of prior to be used.

threshold

Set the threshold for classifiction. The logistic function doesn't return a class label but an estimate of p(y=+1|B, x(i)). These estimates need to be converted to binary class label predictions. values above the threshold are assigned class +1.

tolerance

This value decides the stopping criterion.

Capabilities

The table below describes the capabilites of BayesianLogisticRegression.

Capability

Supported

Class

Binary class

Attributes

Empty nominal attributes, Unary attributes, Numeric attributes, Binary attributes

Min # of instances

0