/
SimpleCart

SimpleCart

Package

weka.classifiers.trees

Synopsis

Class implementing minimal cost-complexity pruning.
Note when dealing with missing values, use "fractional instances" method instead of surrogate split method.

For more information, see:

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (1984). Classification and Regression Trees. Wadsworth International Group, Belmont, California.

Options

The table below describes the options available for SimpleCart.

Option

Description

debug

If set to true, classifier may output additional info to the console.

heuristic

If heuristic search is used for binary split for nominal attributes in multi-class problems (default yes).

minNumObj

The minimal number of observations at the terminal nodes (default 2).

numFoldsPruning

The number of folds in the internal cross-validation (default 5).

seed

The random number seed to be used.

sizePer

The percentage of the training set size (0-1, 0 not included).

useOneSE

Use the 1SE rule to make pruning decisoin.

usePrune

Use minimal cost-complexity pruning (default yes).

Capabilities

The table below describes the capabilites of SimpleCart.

Capability

Supported

Class

Nominal class, Binary class

Attributes

Missing values, Empty nominal attributes, Binary attributes, Unary attributes, Nominal attributes, Numeric attributes

Min # of instances

1