VotedPerceptron

Package

weka.classifiers.functions

Synopsis

Implementation of the voted perceptron algorithm by Freund and Schapire. Globally replaces all missing values, and transforms nominal attributes into binary ones.

For more information, see:

Y. Freund, R. E. Schapire: Large margin classification using the perceptron algorithm. In: 11th Annual Conference on Computational Learning Theory, New York, NY, 209-217, 1998.

Options

The table below describes the options available for VotedPerceptron.

Option

Description

debug

If set to true, classifier may output additional info to the console.

exponent

Exponent for the polynomial kernel.

maxK

The maximum number of alterations to the perceptron.

numIterations

Number of iterations to be performed.

seed

Seed for the random number generator.

Capabilities

The table below describes the capabilites of VotedPerceptron.

Capability

Supported

Class

Missing class values, Binary class

Attributes

Binary attributes, Nominal attributes, Missing values, Empty nominal attributes, Numeric attributes, Date attributes, Unary attributes

Min # of instances

0