Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Current »

Package

weka.classifiers.rules

Synopsis

Class for building and using a 1R classifier; in other words, uses the minimum-error attribute for prediction, discretizing numeric attributes. For more information, see:

R.C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11:63-91.

Options

The table below describes the options available for OneR.

Option

Description

debug

If set to true, classifier may output additional info to the console.

minBucketSize

The minimum bucket size used for discretizing numeric attributes.

Capabilities

The table below describes the capabilites of OneR.

Capability

Supported

Class

Binary class, Missing class values, Nominal class

Attributes

Numeric attributes, Binary attributes, Nominal attributes, Unary attributes, Missing values, Date attributes, Empty nominal attributes

Min # of instances

1

  • No labels